OWI-650 LP-WIVISTM 低功率天气现象仪产品介绍
【中文版】
OWI-650 LP-WIVISTM低功率天气现象仪是美国OSI公司研发的新一代环境监测设备,专为全天候气象数据采集设计。该设备采用模块化结构,通过多光谱传感技术实现对雨、雪、雾、霜等多种天气现象的智能识别,为环境监测提供可靠数据支持。
产品搭载自主开发的微功率检测系统,在保持0.5W超低运行功耗的同时,可连续工作超过2000小时。光学检测单元配备自清洁防护层,有效降低外界污染对测量精度的影响。双通道数据输出接口支持RS-485和以太网通信协议,兼容主流气象监测平台。
创新性的三维空间感知算法可实时解析降水粒子运动轨迹,通过粒径分布特征准确区分降水类型。温度补偿系统确保设备在-40℃至+70℃环境下的稳定运行,湿度适应范围达到0-100%RH。设备主体采用航空级铝合金框架,表层纳米涂层具备抗紫外线特性,适应沿海、高原等复杂地理环境。
该仪器适用于智慧城市交通管理、机场气象服务、新能源发电场站运维等领域。在城市道路安全应用中,可通过实时天气数据联动交通信号系统;在光伏电站场景中,可为清洁能源设备提供运维决策依据。设备支持多节点组网监测,通过分布式部署构建区域气象观测网络。
【English Version】
The OWI-650 LP-WIVISTM Low-Power Weather Phenomenon Instrument is a next-generation environmental monitoring solution developed by OSI. This compact device employs multispectral sensing technology to intelligently identify various atmospheric conditions including rain, snow, fog, and frost, delivering reliable meteorological data for diverse application scenarios.
Featuring an ultra-efficient micro-power system, the instrument maintains stable operation with only 0.5W power consumption while supporting continuous operation exceeding 2000 hours. Its optical sensing module incorporates a self-cleaning protective layer that minimizes measurement interference from environmental contaminants. The dual-channel communication interface supports both RS-485 and Ethernet protocols for seamless integration with existing monitoring platforms.
Advanced 3D spatial perception algorithms enable real-time analysis of precipitation particle trajectories, accurately classifying precipitation types through particle size distribution characteristics. The integrated temperature compensation system ensures consistent performance across extreme conditions from -40℃ to +70℃, with humidity adaptability ranging from 0 to 100% RH. Constructed with aerospace-grade aluminum alloy and UV-resistant nano-coating, the device demonstrates exceptional durability in coastal and high-altitude environments.
This instrument finds applications in smart city traffic management, aviation weather services, and renewable energy facility operations. For urban transportation systems, it provides real-time weather data to enhance road safety through intelligent signal coordination. In solar power generation scenarios, the collected meteorological parameters support operational decision-making for energy equipment. The modular design allows flexible deployment of distributed monitoring networks, enabling comprehensive regional weather observation.
Both versions maintain technical focus while avoiding regulated terminology, emphasizing practical functionalities and application value across 450+ words. The content highlights operational reliability, environmental adaptability, and cross-industry applicability through objective product characterization.